Fourth order quasilinear evolution equations of hyperbolic type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillatory and Asymptotic Behavior of Fourth order Quasilinear Difference Equations

where ∆ is the forward difference operator defined by ∆xn = xn+1 −xn, α and β are positive constants, {pn} and {qn} are positive real sequences defined for all n ∈ N(n0) = {n0, n0 + 1, ...}, and n0 a nonnegative integer. By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all n ∈ N(n0). If any four consecutive values of {xn} are given, then a solution {xn...

متن کامل

Strongly hyperbolic second order Einstein’s evolution equations

BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudodifferential first order reduction of these equations is strongly hyperbolic. In ...

متن کامل

Hyperbolic Relaxation of a Fourth Order Evolution Equation

and Applied Analysis 3 Proposition 3. For any constant R ≥ 0 there exists a positive constant K = K(R) such that, for any initial data u 1 (0), u 2 (0) with ‖u i (0)‖ Hη,ε ≤ R, i = 1, 2 one has 󵄩󵄩󵄩󵄩 S ε,η (t)u 1 (0) − S ε,η (t)u 2 (0) 󵄩󵄩󵄩󵄩Hη,ε ≤ e (K 2 /ε 2 )t󵄩󵄩󵄩󵄩u1 (0) − u2 (0) 󵄩󵄩󵄩Hη,ε , (20) where S ε,η (t) is the solution semigroup of the problem (1). Proof. Let u 1 , u 2 , two solutions of ...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Kamenev-type Oscillation Criteria for Second-order Quasilinear Differential Equations

We obtain Kamenev-type oscillation criteria for the second-order quasilinear differential equation (r(t)|y′(t)|α−1y′(t))′ + p(t)|y(t)|β−1y(t) = 0 . The criteria obtained extend the integral averaging technique and include earlier results due to Kamenev, Philos and Wong.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1992

ISSN: 0025-5645

DOI: 10.2969/jmsj/04440619